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Exercise 4.1 Depth-First Search.

Execute a depth-�rst search (Tiefensuche) on the following graph starting from vertexA (using a stack,
as seen in lecture). Assume that we push successor vertices (Nachfolger) on the stack in reverse alphabe-
tical order. (For example, if the successors are R and U , then we �rst U push on the stack and then R.)

A I C
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1. Mark the edges that belong to the depth-�rst tree (Tiefensuchbaum) with a “T” (for tree edge).

2. For each vertex, give its pre- and post-number.

3. Mark every forward edge (Vorwärtskante) not in the depth-�rst tree with an “F”, every backward
edge (Rückwärtskante) with an “B”, and every cross edge (�erkante) with a “C”.

4. Has the above graph a topological ordering? How can we use the above execution of depth-�rst
search in order to see this?



Exercise 4.2 Breadth-First Search (2 Points).

On the following graph, execute a breadth-�rst search (Breitensuche) starting from vertex A (using a
queue, as seen in the lecture). Assume that successor vertices (Nachfolger) are enqueued in alphabetical
order.
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1. Write down the order in which the vertices are dequeued during this execution of breadth-�rst
search.

2. As seen in the lecture, breadth-�rst search can be used to determine the distances for all vertices
from the start vertex. �ese distances partition the graph into level sets L0, L1, L2, . . ., where Li

is the set of all vertices with distance i from the start vertex.

Use the above execution of breadth-�rst search to compute the distances from the start vertex
and write down these level sets.

3. Consider the following questions about level sets L0, L1, . . . computed by breadth-�rst search in
directed and undirected graphs. Justify your answer.

• In a directed graph, can there be an edge from a level set Li with i ≥ 2 to a level set Lj

with j ≤ i− 2?

• In an undirected graph, can there be an edge from a level set Li with i ≥ 2 to a level set Lj

with j ≤ i− 2?

• In a directed graph, can there be an edge from a level set Li with i ≥ 0 to a level set Lj if
j ≥ i+ 2?

4. LetG be a connected undirected graph, let s be a vertex inG, and let L0, L1, . . . be the level sets
computed by breadth-�rst search starting from vertex s. Prove that G is bipartite if and only if
there are no edges between two vertices in the same level set Li.
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Exercise 4.3 Asymptotic Notation.

1. Suppose f satis�es the condition f(n) ≥ 1 for all n ≥ 1. Show that if g ≤ O(f), then for every
D ≥ 0, we have g(n) +D ≤ O(f(n)).

2. Let f(n) = 1
n , and g(n) = f(n) + 1. Does g(n) ≤ O(f(n)) hold? Justify your answer.

3. In class, we de�ned O(f) to consist of all functions g(n) such that

∃C > 0. ∀n ≥ 1. g(n) ≤ C · f(n) .

Another de�nition forO(f), commonly found in the literature, includes all functions that satisfy
the a-priori weaker condition,

∃C > 0. ∃n0 ≥ 1. ∀n ≥ n0. g(n) ≤ C · f(n) .

(�is condition is a-priori weaker, because it requires the inequality g(n) ≤ C ·f(n) to hold only
for all n ≥ n0 instead of for all n ≥ 1.)

Prove that the two de�nitions of O(f) are in fact equivalent if the function f satis�es f(n) > 0
for all n ≥ 1 (which is typically the case for functions that arise as running times of algorithms).

4. Show that, if we don’t require f to satisfy the condition f(n) > 0 for all n ≥ 1, the above two
de�nitions of O(f) are not necessarily equivalent.

Provide concrete functions f and g such that g satis�es the second de�nition ofO(f) but not the
�rst.

Exercise 4.4 Pouring water (1 Point).

We have three containers whose sizes are 15 liters, 9 liters, and 5 liters, respectively.�e 15-liter contai-
ner starts out full of water, but the 9-liter and 5-liter containers are initially empty. We are allowed one
type of operation: pouring the contents of one container into another, stopping only when the source
container is empty or the destination container is full. We want to �nd a shortest sequence of pourings
that leaves exactly 2 liters in one of the containers.

1. Model this as a graph problem: give a precise de�nition of the graph involved and state the speci�c
question about this graph that needs to be answered.

2. Find a shortest sequence of pourings which leaves exactly 2 liters in one of the containers. Prove
that this sequence is actually shortest.
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