Eidgenossische
Technische Hochschule
Zirich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science
Markus Puschel, David Steurer

Algorithms & Data Structures

Exercise Class (Room & TA):

8. October 2018

Homework 4 HS 18

Submitted by:

Peer Feedback by:

Points:

Exercise 4.1 Depth-First Search.

Execute a depth-first search (Tiefensuche) on the following graph starting from vertex A (using a stack,
as seen in lecture). Assume that we push successor vertices (Nachfolger) on the stack in reverse alphabe-
tical order. (For example, if the successors are R and U, then we first U push on the stack and then R.)

1. Mark the edges that belong to the depth-first tree (Tiefensuchbaum) with a “T” (for tree edge).

2. For each vertex, give its pre- and post-number.

3. Mark every forward edge (Vorwirtskante) not in the depth-first tree with an “F”, every backward
edge (Ruckwartskante) with an “B”, and every cross edge (Querkante) with a “C”.

4. Has the above graph a topological ordering? How can we use the above execution of depth-first

search in order to see this?

Exercise 4.2 Breadth-First Search (2 Points).

On the following graph, execute a breadth-first search (Breitensuche) starting from vertex A (using a
queue, as seen in the lecture). Assume that successor vertices (Nachfolger) are enqueued in alphabetical
order.

1. Write down the order in which the vertices are dequeued during this execution of breadth-first
search.

2. As seen in the lecture, breadth-first search can be used to determine the distances for all vertices
from the start vertex. These distances partition the graph into level sets Lo, L1, Lo, . . ., where L;
is the set of all vertices with distance ¢ from the start vertex.

Use the above execution of breadth-first search to compute the distances from the start vertex
and write down these level sets.

3. Consider the following questions about level sets Lg, L1, . . . computed by breadth-first search in
directed and undirected graphs. Justify your answer.

+ In a directed graph, can there be an edge from a level set L; with i > 2 to a level set L;
with j <4 —2?

+ In an undirected graph, can there be an edge from a level set L; with i > 2 to a level set L;
with j <4 —2?
+ In a directed graph, can there be an edge from a level set L; with 7 > 0 to a level set L; if

j>i+2?

4. Let G be a connected undirected graph, let s be a vertex in GG, and let Lg, L1, . . . be the level sets
computed by breadth-first search starting from vertex s. Prove that G is bipartite if and only if
there are no edges between two vertices in the same level set L;.

Exercise 4.3 Asymptotic Notation.

1. Suppose f satisfies the condition f(n) > 1 for all n > 1. Show that if g < O(f), then for every
D >0, we have g(n) + D < O(f(n)).

2. Let f(n) = 1, and g(n) = f(n) + 1. Does g(n) < O(f(n)) hold? Justify your answer.

3. In class, we defined O(f) to consist of all functions g(n) such that

3C >0.Vn>1.g(n) <C- f(n).

Another definition for O(f), commonly found in the literature, includes all functions that satisfy
the a-priori weaker condition,

3C > 0.3ng > 1.Vn > ng. g(n) < C - f(n).

(This condition is a-priori weaker, because it requires the inequality g(n) < C'- f(n) to hold only
for all n > ng instead of for all n > 1.)

Prove that the two definitions of O(f) are in fact equivalent if the function f satisfies f(n) > 0
for all n > 1 (which is typically the case for functions that arise as running times of algorithms).

4. Show that, if we don’t require f to satisfy the condition f(n) > 0 for all n > 1, the above two
definitions of O(f) are not necessarily equivalent.

Provide concrete functions f and g such that g satisfies the second definition of O(f) but not the
first.

Exercise 4.4 Pouring water (1 Point).

We have three containers whose sizes are 15 liters, 9 liters, and 5 liters, respectively. The 15-liter contai-
ner starts out full of water, but the 9-liter and 5-liter containers are initially empty. We are allowed one
type of operation: pouring the contents of one container into another, stopping only when the source
container is empty or the destination container is full. We want to find a shortest sequence of pourings
that leaves exactly 2 liters in one of the containers.

1. Model this as a graph problem: give a precise definition of the graph involved and state the specific
question about this graph that needs to be answered.

2. Find a shortest sequence of pourings which leaves exactly 2 liters in one of the containers. Prove
that this sequence is actually shortest.

